
刘智,博士,副教授,硕士生导师
2011年获四川大学计算机科学与技术专业博士学位;2014.8-2015.8, The City University of New York(New York, USA)访学;2019.4-2020.5,Western University(London,Canada)访学;中国人工智能学会青工委委员,多个SCI期刊审稿专家。主要从事行人重识别、姿态识别、推荐系统及睡眠质量分析方面的研究;在《IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING》、《Image and Vision Computing》、《Computer Vision and Image Understanding》、《Computerized Medical Imaging and Graphics》、《光学精密工程》等国内外重要刊物及国际会议累计发表论文30余篇,其中SCI收录15篇, 截至23年底, Google Scholar引用336,近5年h-index为8;主持省部级项目3项,主研包括国家自科基金、社科基金及省部级项目10余项;授权发明专利2项,软件著作权10余项;承担《计算智能》、《机器学习》等研究生课程,以及《数据库技术与应用》、《系统分析与设计》、《面向对象程序设计》等本科课程的教学任务;主、参编教材3部;获2017年重庆市高等教育教学成果二等奖一项(参与)。
更多信息请参考Lab Of Liangjiang Vision网站:www.cqutai.cn 。
联系邮箱: liuzhi@cqut.edu.cn
【教育工作背景】
2018.07-,重庆理工大学两江人工智能学院,教师
2019.04-2020.05,Western University(London,Canada),访问学者
2004.07-2018.06,重庆理工大学计算机科学与技术学院,教师
2014.09-2015.08,The City University of New York(New York, USA),访问学者
2007.09-2011.07,四川大学计算机科学与技术专业,工学博士
2001.09-2004.07,重庆大学计算机软件与理论专业,工学硕士
1995.09-1999.07,重庆大学钢铁冶金、计算机科学与技术专业(辅修),工学学士
【近年科研情况】
主持和参与的主要科研项目:
[1] 招商车研测试数据管理系统项目,企业委托,主持,48.6万,2023-12-05
[2] 基于深度学习的脑出血CT图像识别关键技术研究,重庆市教委,主研,4万,2023-10-01
[3] 提示学习范式下多层次知识增强的对话推荐系统研究,重庆市科委,主研,10万,2023-07-01
[4] 智能网联汽车乘员姿态感知与测量方法的研究,企业委托,主持,15万,2022-11-30
[5] 大数据分析研究与实践产学研合作项目,企业委托,主持,20万,2022-05-01
[6] 房屋表面检测机器人,企业委托,主持,5万,2021-10-31
[7] 基于深度条件随机场模型的目标检测方法研究,重庆市科委面上项目,主研,10万,2021-10-01
[8] 基于记忆网络和注意力机制的多视图学习的推荐系统研究,重庆市教委重点项目 主研,4万,2021-10-01
[9] 监控视频深度时空特征提取及时序多尺度行为建模,重庆市基础研究与前沿探索专项面上项目,2019.07-2022.06,10万,主持
[10] 国家青年科学基金项目,面向短文本的分布式表征和多视图融合的个性化推荐研究,2018.01-2020.12,22万,主研
[11] 重庆市科委自然科学基金项目,社交网络公民新闻视频的深度内容感知及摘要生成研究,2017.07-2020.06,5万,主研
[12] 国家社会科学基金项目,基于“大数据+深度学习”中国金融市场波动及预警机制研究,2017.07-2019.12,35万,主研
代表性科研论文:
[1] Liu Z, Li J, Wang X. DstNet: deep spatial-temporal network for real-time action recognition and localisation in untrimmed video[J]. International Journal of Wireless and Mobile Computing, 2022, 23(3-4): 310-317.
[2] Liu Z, Luo S, Lu Y, et al. Extracting multi-scale and salient features by MSE based U-structure and CBAM for sleep staging[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 31: 31-38.
[3] Liu Z, Mu X, Lu Y, et al. Learning transformer-based attention region with multiple scales for occluded person re-identification[J]. Computer Vision and Image Understanding, 2023, 229: 103652.
[4] Liu Z, Qin M, Lu Y, et al. DenSleepNet: DenseNet based model for sleep staging with two-frequency feature fusion and coordinate attention[J]. Biomedical Engineering Letters, 2023, 13(4): 751-761.
[5] Yunhua Lu, Mingzi Jiang, Zhi Liu *, Xinyu Mu,Dual-branch adaptive attention transformer for occluded person re-identification,Image and Vision Computing,Volume 131,2023,104633.
[6] Liu Z, Mu X, Dong S, et al. Constructing Adaptive Multi-Scale Feature via Transformer-Aware Patch for Occluded Person Re-Identification[J]. Symmetry, 2022, 14(7): 1454.
[7] Liu Z, He X, Lu Y. Combining UNet 3+ and transformer for left ventricle segmentation via signed distance and focal loss[J]. Applied Sciences, 2022, 12(18): 9208.
[8] Wang X, Liu Z, Li J, et al. Vision Transformer-based Classification Study of Intracranial Hemorrhage[C]//2022 3rd International Conference on Computer Vision, Image and Deep Learning & International Conference on Computer Engineering and Applications (CVIDL & ICCEA). IEEE, 2022: 1-8.
[9] Zhi LIU,Multi-indices Quantification for Left Ventricle via DenseNet and GRU based Encoder-Decoder with Attention,COMPLEXITY,2021.03.
[10] Liu Z, Xie Q, Lu Y, et al. Skeleton-based Action Recognition with Two-Branch Graph Convolutional Networks[C]//Journal of Physics: Conference Series. IOP Publishing, 2021, 2030(1): 012091.
[11] Liu Z, Li P, Li J T, et al. Left ventricular full segmentation from cardiac Magnetic Resonance Imaging via multi-task learning[C]//2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE). IEEE, 2021: 71-75.
[12] Zhi LIU,Multislice left ventricular ejection fraction prediction from cardiac MRIs without segmentation using shared SptDenNet,Computerized Medical Imaging and Graphics,2020.9.
[13] Zhang Y, Liu Z, Sang C. Unifying paragraph embeddings and neural collaborative filtering for hybrid recommendation[J]. Applied Soft Computing, 2021, 106: 107345.